
1

GPU Computing Workshop

CSU 2013

Background and motivation

Garland Durham

Quantos Analytics

—

2

Outline

(1) Background and motivation

(2) Configuring and using an Amazon EC2 GPU server

(3) Getting started with CUDA

(4) Advanced topics

(5) Higher level APIs and applications

—

3

Background and motivation

What is GPU computing and why should we be interested in it?

• GPU can be thought of as a “math coprocessor”, optimized for performance on specialized

computations

– motivated by the needs of graphics applications

– but, also useful for general computations...

• CPU’s are optimized for serial computations

– hardware implications (lots of silicone devoted to cache and control logic ...)

– inherent limits to this approach (diminishing returns...)

– therefore moving toward mainstream use of multicore CPUs (phones,...)

• GPUs are optimized for total throughput on highly parallel calculations

– a typical GPU may have 100s, or even 1000s of cores (much higher density of com-

putational units)

—

4

Figure — The GPU devotes more transistors to data processing

Source: Nvidia C Programming Guide

—

5

Figure — Floating-Point Operations per Second for the CPU and GPU

Source: Nvidia C Programming Guide

—

6

Figure — Memory Bandwidth for the CPU and GPU

Source: Nvidia C Programming Guide

—

7

Discussion

• If you want performance now or in the future, you have to go parallel

– CPUs (several cores)

– Clusters (network latency)

– GPU’s (thousands of cores)

• How much faster?

– From an academic perspective... (10 years ahead of the curve...)

• Research implications

– new applications

– new algorithms

• Alternative hardware

– FPGA (field programmable gate arrays)

– Playstation (cell)

– Intel

– ???

• Supercomputing

—

8

Discussion — continued

• Why not just develop hardware specialized for the needs of scientific computing?

• Amdahl’s Law

—

9

Hardware

Understanding the hardware is critical to making efficient use of it.

• For future reference, we refer to

– host: CPU and system memory

– device: GPU and GPU memory

• A GPU is comprised of

– global memory (accessible from host and all GPU cores)

– SMs (stream multiprocessors)

• Each SM has

– registers

– thread specific memory

– “shared” memory (shared between threads)

– processing units

• SIMT architecture

– Each SM operates on groups of threads in SIMT fashion.

– Different SM’s can work independently of each other.

—

10

Hardware — continued

• A function run on the device is referred to as a kernel and operates on blocks of threads.

• Each thread block executes on a single SM and can access a common block of shared

memory (threads also have private memory).

• Communication and synchronization

– Threads in the same block can communicate using shared memory.

– Threads in different blocks can only communicate via global memory.

– In either case, synchronization barriers must be used (e.g., to ensure that all threads

have written data before reads are attempted by different threads).

– Synchronization is always costly. But especially when it involves synchronizing across

SMs.

• Memory on the SM itself is nonpersistent (memory associated with a thread block is no

longer accessible after a kernel is finished executing).

• Memory hierarchy:

– Reads/writes to memory on the SM (including shared memory) are fast.

– Reads/writes to global memory are costly.

– Transfers between host and device are yet more costly.

—

11

Hardware — continued

• An SM can have several blocks resident at one time, subject to the following constraints:

– 1024 threads maximum

– resource constraints

∗ each thread has resource requirements(registers, memory, etc)

∗ resources are very limited

– a single block is never split across SMs

• The collection of blocks is referred to as the “grid”. The number of blocks (gridsize) is

user determined.

– There can be more blocks than it is possible to have resident on the available SMs

at one time.

—

12

Hardware — continued

• In practice, the SM operates on groups of threads (“warps”*) in parallel

– warp size is hardware determined (32 threads on recent hardware)

– A block can consist of several warps (blocksize is user determined).

– Processing switches from one warp to the other whenever the execution is waiting

on data.

• Having lots of threads resident on the SM is good (latency hiding)

– referred to as occupancy.

– implications for block size and software design (how much work is done by a single

thread and how work is organized)

• From the user perspective, this is all transparent

– the user selects the grid size and block size

– the compiler takes care of all scheduling.

* In recognition of weaving, the first massively parallel threaded technology (Nvidia User’s Guide).

—

13

Figure — grid of thread blocks

Source: Nvidia C Programming Guide

—

14

Figure — memory hierarchy

Source: Nvidia C Programming Guide

—

15

Links

• https://developer.nvidia.com/category/zone/cuda-zone

• https://developer.nvidia.com/cuda-downloads

—

https://developer.nvidia.com/category/zone/cuda-zone
https://developer.nvidia.com/cuda-downloads

16

Nvidia GPUs

For details on all available GPUs see https://developer.nvidia.com/cuda-gpus.

• Important specs are

– Number of cores

– Amount of memory

– ”Compute capability” (see Users Guide for details)

—

https://developer.nvidia.com/cuda-gpus

17

Nvidia GPUs — continued

Tesla (scientific computing)

*** Tesla K20 (about \$3000)

Tesla K10 (optimized for single precision)

Tesla C2050 C2070 C2075 (previous generation)

Quadro

==========

GTX (consumer cards)

=============

**Titan (about \$1000)

*780 *770 *760 (double precision crippled; \$650 - 400 - 250)

690 680 670 GTX 690 is basically 2 580’s on one card

590 580 570 GTX 590 is basically 2 580’s on one card

The 500 series is better than 600 and 700 series for double precision.

Double precision speed as fraction of single precision:

Titan: 1/3

600 and 700 series: 1/24

500 series: 1/8

Mobile

==============

anandtech.com is a good source of information and benchmarks

—

18

Remarks

• The Amazon EC2 GPU servers have 2 Tesla C2050 cards.

• If you are building your own GPU server, the more powerful cards draw lots of power. Get

a BIG power supply!

—

19

Documentation

Installed at /usr/local/cuda/doc/pdf. Also available online.

** CUDA_C_Best_Practices_Guide.pdf

* CUDA_Compiler_Driver_NVCC.pdf

*** CUDA_C_Programming_Guide.pdf

* CUDA_CUBLAS_Users_Guide.pdf

CUDA_CUFFT_Users_Guide.pdf

CUDA_CUSPARSE_Users_Guide.pdf

CUDA_Debugger_API.pdf

CUDA_Developer_Guide_for_Optimus_Platforms.pdf

CUDA_Dynamic_Parallelism_Programming_Guide.pdf

CUDA_GDB.pdf

* CUDA_Getting_Started_Guide_For_Linux.pdf

CUDA_Getting_Started_Guide_For_Mac_OS_X.pdf

CUDA_Getting_Started_Guide_For_Microsoft_Windows.pdf

CUDA_Memcheck.pdf

CUDA_Profiler_Users_Guide.pdf

CUDA_Samples_Guide_To_New_Features.pdf

* CUDA_Samples.pdf

CUDA_Samples_Release_Notes.pdf

* CUDA_Toolkit_Reference_Manual.pdf

CUDA_Toolkit_Release_Notes.pdf

CUDA_VideoDecoder_Library.pdf

cuobjdump.pdf

CUPTI_User_Guide.pdf

* CURAND_Library.pdf

Floating_Point_on_NVIDIA_GPU_White_Paper.pdf

* Getting_Started_With_CUDA_Samples.pdf

GPUDirect_RDMA.pdf

Kepler_Compatibility_Guide.pdf

Kepler_Tuning_Guide.pdf

NPP_Library.pdf

Nsight_Eclipse_Edition_Getting_Started.pdf

Preconditioned_Iterative_Methods_White_Paper.pdf

ptx_isa_3.1.pdf

qwcode.highlight.css

* Thrust_Quick_Start_Guide.pdf

Using_Inline_PTX_Assembly_In_CUDA.pdf

—

20

Samples

Installed at /usr/local/cuda/samples. Also available online.

0_Simple

asyncAPI cdpSimplePrint cdpSimpleQuicksort clock

cppIntegration cudaOpenMP inlinePTX matrixMul matrixMulCUBLAS

matrixMulDrv matrixMulDynlinkJIT simpleAssert simpleAtomicIntrinsics

simpleCallback simpleCubemapTexture simpleIPC simpleLayeredTexture

simpleMPI simpleMultiCopy simpleMultiGPU simpleP2P

simplePitchLinearTexture simplePrintf simpleSeparateCompilation simpleStreams

simpleSurfaceWrite simpleTemplates simpleTexture simpleTextureDrv

simpleVoteIntrinsics simpleZeroCopy template template_runtime

vectorAdd vectorAddDrv

1_Utilities

bandwidthTest deviceQuery deviceQueryDrv

2_Graphics

bindlessTexture Mandelbrot marchingCubes simpleGL simpleTexture3D volumeFiltering

volumeRender

3_Imaging

bicubicTexture bilateralFilter boxFilter convolutionFFT2D

convolutionSeparable convolutionTexture dct8x8 dwtHaar1D

dxtc histogram HSOpticalFlow imageDenoising

postProcessGL recursiveGaussian SobelFilter stereoDisparity

4_Finance

binomialOptions BlackScholes MonteCarloMultiGPU quasirandomGenerator SobolQRNG

—

21

Samples — continued

5_Simulations

fluidsGL nbody oceanFFT particles smokeParticles

6_Advanced

alignedTypes cdpAdvancedQuicksort cdpLUDecomposition cdpQuadtree

concurrentKernels eigenvalues fastWalshTransform FDTD3d

FunctionPointers interval lineOfSight mergeSort

newdelete ptxjit radixSortThrust reduction

scalarProd scan segmentationTreeThrust shfl_scan

simpleHyperQ sortingNetworks threadFenceReduction threadMigration

transpose

7_CUDALibraries

batchCUBLAS boxFilterNPP common conjugateGradient

conjugateGradientPrecond freeImageInteropNPP grabcutNPP histEqualizationNPP

imageSegmentationNPP MC_EstimatePiInlineP MC_EstimatePiInlineQ MC_EstimatePiP

MC_EstimatePiQ MC_SingleAsianOptionP MersenneTwisterGP11213 randomFog

simpleCUBLAS simpleCUFFT simpleDevLibCUBLAS

—

22

Other resources

• “Cuda By Example” (an excellent book for learning about CUDA at the introductory level)

• “CUDA Application Design and Development”

• “Programming Massively Parallel Processors: A Hands On Approach”

• ”GPU Gems,” Volumes 1-3 (These are available online at Nvidia.com).

– Volume 1 is mostly outdated.

– Volume 2, see Part IV: “General-Purpose Computation on GPUS: A Primer” (chap-

ters 29-36)

– Volume 3, Part VI: ”GPU Computing”, especially chapter 37 (random number gen-

eration) and chapter 39 (prefix scan).

See workshop home page for more links.

—

