
1

GPU Computing Workshop

CSU 2013

Advanced topics

Garland Durham

Quantos Analytics

—



2

The device qualifier

Device functions Functions to be called from kernels (and thus run on the device) must have

the __device__ qualifier. If a function is to be run on both both host and device, it must

have both __device__ and __host__ qualifiers.

Device variables It is possible to do static allocations on the device using the __device__

qualifier with a variable. To use a pointer to a __device__ variable on the host, we need

to get a “host pointer” using cudaGetSymbolAddress(). (See Appendix B.2.1 of CUDA

C Programming Guide.)

See code/deviceQualifier for sample code.

—



3

Shared memory

• Things get more “interesting” when threads need to communicate with each other.

• Threads within the same block can communicate using shared memory.

• Shared memory is declared using the __shared__ qualifier.

—



4

Reduction

• A reduction is an operation that takes a large vector as input and returns a smaller vector

as output.

• For example, summing the elements of a vector.

• Reduction operations are important in parallel programming, and provide a useful exercise

for demonstrating communication between threads.

• See code/reduce1.

—



5

Generic reductions

In this example, we implement reduction using a generic reduction function.

• The reduction function is implemented using a “functor”.

• Note dynamic allocation of shared memory.

• see code/genericReduce and code/util/mycuda_reduce.cu.

—



6

Reductions

In this example, we implement global reduction using a generic reduction function. (First reduce

blockwise and then reduce across block sums.)

• see code/globalReduce.

• Exercise: Given a matrix of size M x N stored in column major (fortran) form, compute

column sums.

• Exercise: Try modifying the code to allow the possibility of computing row sums.

• Exercise: Given a matrix of size M x N, compute the covariance matrix, copy the result

back to the host, and print.

• Exercise: Try implementing the reduction across groups using atomicAdd().

—



7

Prefix scan

A prefix scan takes a vector x as input and returns a vector y such that

inclusive prefix scan y[i] = x[0] + ... + x[i]

exclusive prefix scan] y[i] = x[0] + ... + x[i-1]

• See code/prefixScan for prefix scan on a blockwise basis.

• Exercise: Extend this to do a global prefix scan.

• Exercise: Extend to generic scan operation and data type.

—



8

Random number generation

See /code/simpleRandom.

—



9

CUBLAS

• See cuda_samples/7_CUDALibraries/simpleCUBLAS.

• See documentation at http://docs.nvidia.com/cuda/cublas/index.html

• CUBLAS uses the entire GPU for a single matrix operation (presumably on very large

matrices).

• In the alternative situation where you want to do lots of matrix operations (one per thread)

on smaller matrices, you’re on your own...

—

http://docs.nvidia.com/cuda/cublas/index.html


10

Exercises

—


